Tugas Kelompok




Kontrol Ledakan Gas LPG dengan Sensor MQ-2 dan Flame Sensor


1. Tujuan <kembali>

  • Mampu memahami cara kerja dari sensor infrared dan pir

  • Mengetahui simulasi rangkaian sensor infrared dan pir dengan menggunakkan aplikasi proteus

2. Alat dan Bahan <kembali>

2.1. Alat : <kembali>

1 . Voltmeter DC

Difungsikan guna mengukur besarnya tegangan listrik yang terdapat dalam suatu rangkaian listrik. Dimana, untuk penyusunannya dilakukan secara paralel sesuai pada lokasi komponen yang sedang diukur.

2. Power supply

Power Supply atau dalam bahasa Indonesia disebut dengan Catu Daya adalah suatu alat listrik yang dapat menyediakan energi listrik untuk perangkat listrik ataupun elektronika lainnya.

 

3. Alternator

Alternating Current (AC) adalah jenis arus listrik, di mana arah aliran elektron berubah bolak-balik secara berkala. Satu keuntungan dari arus bolak-balik adalah relatif murah untuk mengubah tegangan arus.


2.2. Bahan : <kembali>

1. Resistor

Resistor merupakan komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur besarnya arus yang mengalir dalam rangkaian.

 


Spesifikasi Resistor yang dipakai:

a. Resistor 10k

b. Resistor 1k





2. Dioda

Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.


Karakteristik dioda


3. Transistor(BC547)


 Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Pada rangkaian sensor ini transistor hanya digunakan sebagai saklar, dengan adanya arus di base maka transistor akan "on" sehingga akan ada arus dari kolektor ke emitor.

Spesifikasi Transistor:

1. DC Current gain(hfe) maksimal 800
2. Arus Collector kontinu(Ic) 100mA
3. Tegangan Base-Emitter(Vbe) 6V
4. Arus Base(Ib) maksimal 5mA

Data Sheet Transistor



Grafik respon

4. OP AMP

  Operational Amplifier atau Op-Amp adalah komponen elektronika yang berfungsi sebagai penguat sinyal input baik DC maupun AC.

Konfigurasi pin Op-Amp

Gelombang input dan output Op Amp

Datasheet Op-Amp
 


5. Sensor PIR

Sensor PIR (Passive Infra Red) adalah sensor yang dapat mendeteksi pancaran sinar infra merah secara pasif (menangkap radiasi infra merah dari objek bergerak tanpa perlu memancarkan sinar infra merah sendiri secara aktif,

Konfigurasi pin

Grafik Respon Pir terhadap suhu

Grafik sensor pir terhadap jarak, kecepatan,arah objek


6. Sensor Infrared



Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar

 Konfigurasi pin infrared

Konfigurasi pin infra red (IR) receiver atau penerima infra merah tipe TSOP adalah

 a. output (Out),

 b. Vs (VCC +5 volt DC),

 c. Ground (GND)

 

Datasheet sensor infrared

7. Relay

Relay adalah komponen yang berfungsi untuk mengalirkan arus listrik yang besar dengan menggunakan kendali listrik arus kecil. Relay memiliki fungsi sebagai saklar atau elektromagnetik switch yang mana dikendalikan oleh magnet listrik.

Konfigurasi pin


Spesifikasi relay

8. Battery



Sumber tegangan terbagi menjadi dua yaitu sumber tegangan AC (arus bolak-balik) dan DC (arus searah), yang berfungsi sebagai penghasil tegangan pada rangkaian.Pada rangkaian ini menggunakan sumber tegangan DC.

Spesifikasi battery yang digunakan : 12V 


9. Lamp 

Lampu adalah sumber cahaya buatan yang dihasilkan melalui penyaliuran arus listrik melalui filamen yang kemudian memanas dan menghasilkan cahaya

Spesifikasi :

Lampu yang digunakan memiliki tegangan sebesar 12 V.

Datasheet lampu LED

Grafik Respon 


10. Motor DC

 

Digunakan untuk output dari rangkaian dan berjalan jika rangkaian diatur skalanya ke yang telah ditetapkan

Tegangan Terukur 5V DC


Grafik Motor DC


 Spesifikasi item:

o   Tanpa kecepatan beban 12000 ± 15% rpm

o   Tidak ada arus beban ≤280mA

o   Tegangan operasi 1.5-9V DC

o   Mulai Torsi ≥250g.cm (menurut blade yang dikembangkan sendiri)

 o   mulai saat ini ≤5A

o   Resistansi Isolasi di atas 10Ω antara casing dan terminal DV 100V

o   Arah Rotasi CW: Terminal [+] terhubung ke catu daya positif, terminal [-] terhubung ke nagative

o   daya, searah jarum jam dianggap oleh arah poros keluaran

o   celah poros 0,05-0,35mm


3. Dasar Teori <kembali>

1. Resistor

Resistor merupakan komponen pasif yang memiliki nilai resistansi tertentu dan berfungsi untuk menghambat jumlah arus listrik yang mengalir dalam suatu rangkaian. Resistor dapat diklasifikasikan menjadi beberapa jenis, diantaranya resistor nilai tetap (fixed resistor), resistor variabel (variabel resistor), thermistor, dan LDR.


Cara membaca nilai resistor

Cara menghitung nilai resistansi resistor dengan gelang warna :

1. Masukan angka langsung dari kode warna gelang pertama.

2. Masukan angka langsung dari kode warna gelang kedua.

3. Masukan angka langsung dari kode warna gelang ketiga.

 4. Masukkan jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10                 (10^n).

 5. Gelang terakhir merupakan nilai toleransi dari resistor


2. Diode

Cara Kerja Dioda:

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

 a. tanpa tegangan

Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p.

 b. kondisi forward bias

Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif.

c. kondisi reverse bias

Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub.


3. Transistor

Transistor PNP


Pada transistor PNP, semikonduktor tipe-N diapit oleh dua semikonduktor tipe-P. Transistor PNP juga dapat dibentuk dengan menghubungkan katoda dari dua dioda sebagai base dan anoda sebagai kolektor dan emitor. Hubungan emitter-base foward bias sementara collector-base reverse bias. Jadi, arus mengalir dari emitor ke kolektor karena potensial emitor lebih besar daripada base dan kolektor.

 Transistor NPN

Pada transistor NPN, semikonduktor tipe-P diapit oleh dua semikonduktor tipe-N. Transistor NPN juga dapat dibentuk dengan menghubungkan anoda dari dua dioda sebagai base dan katoda sebagai kolektor dan emitor. Arus mengalir dari kolektor ke emitor karena potensial kolektor lebih besar daripada base dan emitor.

 


Transistor sebagai saklar

Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titk jenuh (saturasi). Pada titk jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut-off sehingga tidak ada arus dari kolektor ke emitor. Nilai resistor terhubung ke base (Rb) dapat dihitung dengan;

Rb = Vbe / Ib

 

Transistor sebagai penguat

Transistor sebagai penguat jika bekerja dalam daerah aktif. Tegangan, arus, dan daya dapat diperkuat dengan beberapa konfigurasi seperti common emitter, common colector, dan common base.

DC Current Gain = Collector Current (Ic) / Base Current (Ib)

4. OP-AMP

Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.

Op-Amp memiliki beberapa karakteristik, diantaranya:

a. Penguat tegangan tak berhingga (AV = )

b. Impedansi input tak berhingga (rin = )

c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = )

d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)

Rangkaian Dasar OP AMP

a. OP AMP Inverting


Penguatan yang outputnya berbeda fasa 180° dengan inputnya, bila input positif maka output akan menjadi negatif.
 

Vout = - (Rf / R1) Vin

b. OP AMP Non Inverting


Penguatan yang outputnya sama dengan input yaitu tidak ada pembalikan fasa.
 

Vout = Vin (1 + Rf / Rin)


5. Sensor PIR

PIR (Passive Infrared Receiver) merupakan sebuah sensor berbasiskan infrared. Akan tetapi, tidak seperti sensor infrared kebanyakan yang terdiri dari IR LED dan fototransistor. PIR tidak memancarkan apapun seperti IR LED. Sesuai dengan namanya ‘Passive’, sensor ini hanya merespon energi dari pancaran sinar inframerah pasif yang dimiliki oleh setiap benda yang terdeteksi olehnya. Benda yang bisa dideteksi oleh sensor ini biasanya adalah tubuh manusia

 Diagram sebsor PIR:


 

PIR (Passive Infrared Receiver) merupakan sebuah sensor berbasiskan infrared. Akan tetapi, tidak seperti sensor infrared kebanyakan yang terdiri dari IR LED dan fototransistor. PIR tidak memancarkan apapun seperti IR LED. Sesuai dengan namanya ‘Passive’, sensor ini hanya merespon energi dari pancaran sinar inframerah pasif yang dimiliki oleh setiap benda yang terdeteksi olehnya. Benda yang bisa dideteksi oleh sensor ini biasanya adalah tubuh manusia.

 

Sensor PIR ini bekerja dengan menangkap energi panas yang dihasilkan dari pancaran sinar inframerah pasif yang dimiliki setiap benda dengan suhu benda diatas nol mutlak. Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32 derajat celcius, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Prosesnya hampir sama seperti arus listrik yangterbentuk ketika sinar matahari mengenai solar cell.


6. Sensor Infrared


Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.

 

   Komponen led inframerah atau infra red (IR) pada dasarnya adalah led yang memancarkan sinar infra merah dengan panjang gelombang 850nm.

Infra red (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier).

Bentuk dan Konfigurasi Pin IR Detector Photomodules TSOP

Prinsip Kerja sensor infrared

Gambar 1. Ilustrasi prinsip kerja sensor infrared

Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.

Gambar 2. Rangkaian dasar sensor infrared common emitter yang menggunakan led infrared dan fototransistor


Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3

Gambar 3. Keadaan Basis Mendapat Cahaya Infra Merah dan Berubah Menjadi Saklar (Switch Close) Secara Sesaat

Grafik Respon Sensor Infrared

Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.


7. Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.



Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali.  Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet.  Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal.  Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik.  Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal close.

Fitur:

 1. Tegangan pemicu (tegangan kumparan) 5V

 2. Arus pemicu 70mA

 3. Beban maksimum AC 10A @ 250 / 125V

 4. Maksimum baban DC 10A @ 30 / 28V

 5. Switching maksimum

 

8. Battery

Battery pada rangkaian digunakan sebagai supply bagi motor dc

Spesifikasi battery : 12 V

Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik. Ketika baterai memasok daya listrik, terminal positifnya adalah katode dan terminal negatifnya adalah anoda. Terminal bertanda negatif adalah sumber elektron yang akan mengalir melalui rangkaian listrik eksternal ke terminal positif. Ketika baterai dihubungkan ke beban listrik eksternal, reaksi redoks mengubah reaktan berenergi tinggi ke produk berenergi lebih rendah, dan perbedaan energi-bebas dikirim ke sirkuit eksternal sebagai energi listrik. Secara historis istilah "baterai" secara khusus mengacu pada perangkat yang terdiri dari beberapa sel, namun penggunaannya telah berkembang untuk memasukkan perangkat yang terdiri dari satu sel. Kutub yang bertanda positif menandakan bahwa memiliki energi potensial yang lebih tinggi daripada kutub bertanda negatif. Kutub bertanda negatif adalah sumber elektron yang ketika disambungkan dengan rangkaian eksternal akan mengalir dan memberikan energi ke peralatan eksternal. Ketika baterai dihubungkan dengan rangkaian eksternal, elektrolit dapat berpindah sebagai ion didalamnya, sehingga terjadi reaksi kimia pada kedua kutubnya. Perpindahan ion dalam baterai akan mengalirkan arus listrik keluar dari baterai sehingga menghasilkan kerja. Meski sebutan baterai secara teknis adalah alat dengan beberapa sel, sel tunggal juga umumnya disebut baterai.


9. Lampu LED

Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor.

 

LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).


10. Motor DC

 Prinsip Kerja Motor DC

    Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).

    Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti

    Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan. 


4. Percobaan <kembali>

 1. Siapkan semua alat dan bahan yang diperlukan

 2. Disarankan agara membaca datasheet setiap komponen

 3. Cari komonen yang diperlukan di library proteus

 4. Pasang Sensor PIR, Sensor Infrared, resistor , relay, lamp, transistor dan batrai sesuai gambar  rangkaian dibawah

 5. Atur nilai resistor pada rangkaian

 6. Coba dijalankan rangkaian apabila ouput hidup(lamp) dan motor dc maka rangkaian bisa digunakan

 

4.2. Rangkaian Simulasi <kembali>

Ketika sensor infrared dan Sensor PIR tidak mendeteksi objek


Ketika sensor PIR mendeteksi adanya pergerakan objek disekitar hangar maka sensor berlogika 1 dan infrared yang dipsangkan pada pintu hangar masih berlogika 0


Ketika sensor pir dan infrared berlogika 1 output motor dc dan lamp akan menyala yang menandakan sensor pir mendeteksi pesawat yang mau masuk dan infrared sebagai pembuka pintu hangar otomatis


4.3. Prinsip Kerja <kembali>

Pada Rangkaian ini digunakan sensor PIR sebagai pendeteksi objek (pesawat) didepan hangar dan sensor Infrared sebagai pembuka pintu hangar otomatis. Jiak sensor pir berlogika satu maka arus akan mengalir dari ouput sensor pir lalu masuk ke op amp non inverting sehingga terjadi penguatan sebesar 2x sehingga tegangan yang terukur pada output sensor yang awalnya 5V menjadi 10V. Lalu arus yang besar dihambat dengan resistor R6 dan terbaca tegangan pada basis transistor sebesar 0,76V sehingga transistor aktiv. Jika transistor aktiv maka arus mengalir dari power menuju transistor lalu masuk ke relay dan tegangan pada relay cukup sehingga relay aktiv dan  lampu serta motor dc berputar yang menandakan jika ada pesawat didepan hangar.

Pada sensor Infrared jika berlogika 1 maka output terbaca 5V dan masuk ke op amp non inverting sehingga terjadi penguatan 2x sehingga terjadi tegangan sebsar 10V dan dihambat oleh R3 agar arus masuk ke transistor tidak besar disini terbaca tegangan di transistor sebesar 0,86 sehingga transistor aktiv dan arus masuk dari power ke relay dan masuk ke collector transistor lalu ke ground. Karena relay mendapatkan tegangan yang cukup maka output berupa motor dc akan hidup. Ini menandakan sensor infrared akan membuka pintu hangar otomatis karena adanya pesawat yag mau masuk dan sudah terdeteksi oleh senso pir.

 

4.4. Video <kembali>






4.5. Download File <kembali>

Download  HTMLdan Materi

DownloadFile Rangkaian Proteus

DownloadVideo Rangkaian

Download Data Sheet Diode

Download Data Sheet Relay

Download Data Sheet Sensor Infrared

Download Library sensor Infrared

Download Sensor Infrared

Download Data Sheet Transistor BC547

Download Data Sheet Sensor PIR

Download sensor PIR

Download Library sensor PIR

 

 

 

 


Tidak ada komentar:

Posting Komentar