Aplikasi Flip-Flop




Mesin Penghitung Barang Pabrik

1. Tujuan <kembali>

  • Mengetahui pengertian Sensor Infrared dan Sensor Touch

  • Mengetahui Simulasi rangkaian sensor Infrared dan Sensor Touch dengan proteus

  • Mengetahui tabel kebenaran dari jenis gerbang logika yang digunakan


2. Alat dan Bahan <kembali>

2.1. Alat : <kembali>

1. Power supply

Power Supply atau dalam bahasa Indonesia disebut dengan Catu Daya adalah suatu alat listrik yang dapat menyediakan energi listrik untuk perangkat listrik ataupun elektronika lainnya.

 

2 . Voltmeter DC

Difungsikan guna mengukur besarnya tegangan listrik yang terdapat dalam suatu rangkaian listrik. Dimana, untuk penyusunannya dilakukan secara paralel sesuai pada lokasi komponen yang sedang diukur.

2.2. Bahan : <kembali>

1. Resistor

Resistor merupakan komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur besarnya arus yang mengalir dalam rangkaian.

 


Spesifikasi Resistor yang dipakai:

Resistor 10k ohm



respon function resistor terhadap suhu:
Datasheet resistor:

2. Diode

Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.

Karakteristik Dioda:


DataSheet Dioda:

3. Transistor(BC547)


 Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Pada rangkaian sensor ini transistor hanya digunakan sebagai saklar, dengan adanya arus di base maka transistor akan "on" sehingga akan ada arus dari kolektor ke emitor.

Spesifikasi Transistor:

1. DC Current gain(hfe) maksimal 800
2. Arus Collector kontinu(Ic) 100mA
3. Tegangan Base-Emitter(Vbe) 6V
4. Arus Base(Ib) maksimal 5mA

Data Sheet Transistor

Grafik respon transistor:


4. Inverter NOT( IC 74HC05)

Gerbang NOT atau disebut juga "NOT GATE" atau Inverter (Gerbang Pembalik) adalah jenis gerbang logika yang hanya memiliki satu input (Masukan) dan satu output (keluaran)

Spesifikasi IC inverter yang dijual dipasaran:

Adapan IC inverter gerbang logika NOT yang tersedia yaitu :

  • TTL Logic NOT Gates
  • 74LS04 Hex Inverting NOT Gate
  • 74LS14 Hex Schmitt Inverting NOT Gate
  • 74LS1004 Hex Inverting Drivers
  • CMOS Logic NOT Gates
  • CD4009 Hex Inverting NOT Gate
  • CD4069 Hex Inverting NOT Gate

 

DataSheet IC 74HC05

5. Gerbang Logika AND (IC 7408)

IC TTL adalah IC yang banyak digunakan dalam rangkaian digital karena menggunakan sumber tegangan (VS) antara 4,75 Volt sampai 5,25 Volt. Komponen pembangun IC TTL(transistor-transistor logic) adalah sesuai dengan namanya IC ini berisi beberapa transistor yang digabungkan sehingga membentuk dua keadaan (ON/FF).Konfiugurasi pin:

- Vcc : Kaki 14

 - GND : Kaki 7

- Input : Kaki 1, 2, 3, 4, 5, 9,10,12 dan 13

- Output : Kaki 3,6, 8,  dan 11

Konfigurasi IC 7408:

Datasheet IC 7408:

6. D flip-flop (IC 7474)

Data flip-flop merupakan pengemangan dari RS flip-flop, pada D flip-flop kondisi output terlarang (tidak tentu) tidak lagi terjadi. Data flip-flop sering juga disebut dengan istilah D-FF sehingga lebih mudah dalam penyebutannya

Konfigurasi pin IC 7474:

Datasheet IC 7474:


7. IC Counter (IC 4026)

IC 4026 adalah 16-pin CMOS 7-segmen counter dari seri 4000. Jika input clock diberikan pulsa maka akan menghasilkan output dalam bentuk yang dapat ditampilkan pada layar 7-segmen. IC ini untuk menyederhanakan penggunaan dekoder desimal ke biner atau 7-segmen decoder pada rangkaian counter/pencacah.

Konfigurasi pin :

Data Sheet IC 4026:

8. Logicstate


Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya


9. Sensor Infrared

Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.

Konfigurasi pin infrared:

Konfigurasi pin infra red (IR) receiver atau penerima infra merah tipe TSOP adalah

 a. output (Out),

 b. Vs (VCC +5 volt DC),

 c. Ground (GND)

 

Datasheet sensor infrared

10. Touch sensor

Sensor sentuh merupakan sebuah saklar yang cara penggunaanya dengan cara disentuh menggunakan jari. Ketika sensor ini disentuh maka sensor akan bernilai HIGH.

Konfigurasi pin:


Spesifikasi sensor touch:


grafik sensor sentuh:


11. 7 Segment Anoda

Layar tujuh segmen adalah salah satu perangkat layar untuk menampilkan sistem angka desimal yang merupakan alternatif dari layar dot-matrix. Layar tujuh segmen ini sering kali digunakan pada jam digital, meteran elektronik, dan perangkat elektronik lainnya yang menampilkan informasi numerik.

Data Sheet Seven segment:


12. Relay

Relay adalah komponen yang berfungsi untuk mengalirkan arus listrik yang besar dengan menggunakan kendali listrik arus kecil. Relay memiliki fungsi sebagai saklar atau elektromagnetik switch yang mana dikendalikan oleh magnet listrik.

Konfigurasi pin


Spesifikasi relay



13. Motor DC

Digunakan untuk output dari rangkaian dan berjalan jika sensor berlogika 1

 

    

Tegangan Terukur 5V DC      

Grafik motor DC:


                 

 

Spesifikasi item:

  • Tanpa kecepatan beban 12000 ± 15% rpm
  • Tidak ada arus beban =280mA
  • Tegangan operasi 1.5-9V DC
  • Mulai Torsi =250g.cm (menurut blade yang dikembangkan sendiri)
  • mulai saat ini =5A
  • Resistansi Isolasi di atas 10O antara casing dan terminal DV 100V
  • Arah Rotasi CW: Terminal [+] terhubung ke catu daya positif, terminal [-] terhubung     ke nagative
  • daya, searah jarum jam dianggap oleh arah poros keluaran
  •  celah poros 0,05-0,35mm

 Data Sheet Motor DC :

 


14. Lamp 

Lampu adalah sumber cahaya buatan yang dihasilkan melalui penyaliuran arus listrik melalui filamen yang kemudian memanas dan menghasilkan cahaya

Spesifikasi :

Lampu yang digunakan memiliki tegangan sebesar 12 V.

Datasheet lampu LED

Grafik Respon 


3. Dasar Teori <kembali>

1. Resistor

Resistor atau hambatan adalah salah satu komponen elektronika yang memiliki nilai hambatan tertentu, dimana hambatan ini akan menghambat arus listrik yang mengalir melaluinya. Satuan Resistor adalah Ohm (simbol: O) yang merupakan satuan SI untuk resistansi listrik. Dalam sejarah, kata ohm itu diambil dari nama salah seorang fisikawan hebat asal German bernama George Simon Ohm. Beliau juga yang mencetuskan keberadaan hukum ohm yang masih berlaku hingga sekarang.

Rumus dari Rangkaian Seri Resistor: Rtotal = R1 + R2 + R3 + ….. + Rn

Rumus dari Rangkaian paralel Resistor: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn

Rumus resistor dengan hukum ohm: R = V/I

Cara menentukan nilai resistor dapat dilihat dengan gelang warna pada tabel berikut:


Contohnya sebagai berikut:


2. Diode

Cara Kerja Dioda:

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

 a. tanpa tegangan

Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p.

 b. kondisi forward bias

Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif.

c. kondisi reverse bias

Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub.


3. Transistor

 Transistor NPN

Pada transistor NPN, semikonduktor tipe-P diapit oleh dua semikonduktor tipe-N. Transistor NPN juga dapat dibentuk dengan menghubungkan anoda dari dua dioda sebagai base dan katoda sebagai kolektor dan emitor. Arus mengalir dari kolektor ke emitor karena potensial kolektor lebih besar daripada base dan emitor.

 

Transistor PNP


Pada transistor PNP, semikonduktor tipe-N diapit oleh dua semikonduktor tipe-P. Transistor PNP juga dapat dibentuk dengan menghubungkan katoda dari dua dioda sebagai base dan anoda sebagai kolektor dan emitor. Hubungan emitter-base foward bias sementara collector-base reverse bias. Jadi, arus mengalir dari emitor ke kolektor karena potensial emitor lebih besar daripada base dan kolektor.

Transistor sebagai saklar

Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titk jenuh (saturasi). Pada titk jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut-off sehingga tidak ada arus dari kolektor ke emitor. Nilai resistor terhubung ke base (Rb) dapat dihitung dengan;

Rb = Vbe / Ib

 

Transistor sebagai penguat

Transistor sebagai penguat jika bekerja dalam daerah aktif. Tegangan, arus, dan daya dapat diperkuat dengan beberapa konfigurasi seperti common emitter, common colector, dan common base.

DC Current Gain = Collector Current (Ic) / Base Current (Ib)


4. Inverter NOT (IC 74HC05)

Gerbang NOT atau disebut juga "NOT GATE" atau Inverter (Gerbang Pembalik) adalah jenis gerbang logika yang hanya memiliki satu input (Masukan) dan satu output (keluaran). Dikatakan Inverter (gerbang pembalik) karena gerbang ini akan menghasilkan nilai ouput yang berlawanan dengan nilai inputnya . Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang NOT berikut.


Pada gerbang logika NOT, simbol yang menandakan operasi gerbang logika NOT adalah tanda minus (-) diatas variabel, perhatikan gambar diatas.

Perhatikan tabel kebenaran gerbang NOT. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang NOT akan menghasilkan output (keluaran) logika 1 bila variabel input (masukan) bernilai logika 0" sebalikanya "Gerbang NOT akan menghasilkan keluaran logika 0 bila input (masukan) bernilai logika 1


5. Gerbang Logika AND (IC 7408)

Gerbang AND atau disebut juga "AND GATE" adalah jenis gerbang logika yang memiliki dua input (Masukan) dan satu output (keluaran). Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang AND berikut

Pada gerbang logika AND, simbol yang menandakan operasi gerbang logika AND adalah tanda titik (.) atau bisa juga dengan tanpa tanda titik, contohnya seperti Z = X.Y atau Z = XY.

Perhatikan tabel kebenaran gerbang AND. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang AND akan menghasilkan output (keluaran) logika 1 bila semua variabel input (masukan) bernilai logika 1" sebalikanya "Gerbang AND akan menghasilkan keluaran logika 0 bila salah satu masukannya merupakan logika 0"

Jenis Gerbang Logika AND

Adapun gerbang logika AND terdiri dari gerbang logika AND 2 input dan 3 input. Untuk memperjelas silahkan perhatikan gambar berikut.



Berdasarkan ekspresi Boolean untuk fungsi logika AND didefinisikan sebagai (.) yang mana merupakan operasi bilangan biner, sehingga gerbang AND dapat diturunkan secara bersama-sama untuk membentuk sejumlah input.

Tetapi mengingat bahwa IC gerbang AND yang tersedia dipasaran hanya terdiri dari input 2, 3, atau 4. maka diperlukan input tambahan , sehingga gerbang AND standar perlu diturunkan bersama sehingga mendapatkan nilai input yang diperlukan, sebagai contoh

Gerbang AND Multi Input


Berdasarkan Gerbang AND 6 input diatas maka ekspresi Boolean yaitu :

Q = (A.B).(C.D).(E.F)


6. D flip-flop (IC 7474)

Data flip-flop merupakan pengembangan dari RS flip-flop, pada D flip-flop kondisi output terlarang (tidak tentu) tidak lagi terjadi. Data flip-flop sering juga disebut dengan istilah D-FF sehingga lebih mudah dalampenyebutannya. Data flip-flop merupakan dasar dari rangkaian utama sebuah memori penyimpan data digital. Input atau masukan pada RS flip-flop adalah 2 buah yaitu R (reset) dan S (set), kedua input tersebut dimodifikasi sehingga pada Data flip-flop menjadi 1 buah input saja yaitu input atau masukan D (data) saja. Model modifikasi RS flip-flopmenjadi D flip-flop adalah dengan penambahan gerbang NOT (Inverter) dari input S ke input R pada RS flip-flop seperti telihat pada gambar dasar D flip-flop berikut. 

Gambar Rangkaian Dasar D Flip-Flop.


Pada gambar diatas input Set (S) dihubungkan ke input Reset (R) pada RS flip-flop menggunakan sebuah inverter sehingga terbentuk input atau masukan baru yang diberi nama input Data (D). Dengan kondisi tersebut maka RS flip-flop berubah menjadi Data Flip-Flop (D-FF). Pada perkembanganya D flip flop ini ditambahkan dengan input atau masukan control berupa enable/clock seperti ditunjukan pada gambar berikut. 

Gambar Data Flip-FLop Dengan Enable/Clock.

Gambar diatas memperlihatkan Data flip-flop yang dilengkapi denganmasukan enable/clock. Fungsi input enable/clock diatas adalah untuk menahan data masukan pada jalur Data (input D) agar tidak diteruskan ke rangkaian RS flip-flop. Prinsip kerja dari rangkaian Data flip-flop dengan clock diatas adalahsebagai berikut. Apabila input clock berlogika 1 “High” maka input pada jalur data akan di teruskan ke rangkaian RS flip flop, dimana pada saat input jalur Data 1 “High” maka kondisi tersebut adalah Set Q menjadi 1 “High” dan pada saat jalur Data diberikan input 0 “Low” maka kondisi yang terjadi adala Reset Q menjadi 0 “Low”. Kemudian Pada saat input Clock berlogika rendah maka data output pada jalur Q akan ditahan (memori 1 bit) walaupun logika pada jalur input Data berubah. Kondisi inilah yang disebut sebagai dasar dari memor 1 bit. Untuk lebih jelasnya dapat dilihat pada tabel Data flip-flop berikut.

Dari tabel kebenaran diatas terlihat bahwa Data flip-flop merupakan dasar dari pembuatan memori digital 1 bit. Data Flip-flop sering juga disebut sebagai D-latch.


7. IC Counter (IC 4026)

IC CD4026 adalah IC yang dapat melakukan fungsi penghitung serta Driver 7-segmen. Satu IC tunggal dapat digunakan untuk menghitung dari nol (0) hingga sembilan (9) secara langsung pada tampilan 7-segmen tipe Common Cathode. Hitungannya dapat ditingkatkan hanya dengan memberikan pulsa clock yang tinggi; juga lebih dari satu digit (0-9) dapat dibuat dengan mengalirkan lebih dari satu IC CD4026. Jadi jika Anda memiliki tampilan 7-segmen (CC) di mana Anda harus menampilkan angka-angka yang dihitung berdasarkan beberapa kondisi, maka IC ini akan menjadi pilihan yang tepat.

IC CD4026 dapat bekerja dari 3V hingga 15V, tetapi biasanya diberi daya dengan + 5V ke pin Vdd / Vcc dan pin Ground / Vss terhubung ke ground. IC memiliki 7 pin keluaran yang diberi nama dari Out A sampai Out G yang langsung dihubungkan ke display 7 segmen. Pin penghambat clock (pin 2) harus dijaga rendah (ground / 0V) agar sinyal clock dapat dikirim ke IC juga pin Enable Input (pin 3) harus dibuat tinggi (+ 5V) sehingga output pin (Out A ke G) dapat diaktifkan.

Pin 7-segmen akan menambah hitungan dengan satu angka setiap kali pin jam (pin 1) dibuat tinggi. Sumber jam ini dapat diperoleh dari IC 555 atau IC digital lain yang kompatibel dengan TTL. Mereka hanya perlu menghasilkan pulsa tegangan rendah 0V dan tegangan tinggi 5V. Di rangkaian di bawah ini saya telah menggunakan sumber clock 1Hz untuk menambah hitungan. Jadi angka tersebut akan bertambah untuk setiap (T = 1 / F) 1 detik.

Pin Reset (pin 15) digunakan untuk mengatur ulang hitungan kembali ke nol saat dibuat tinggi. Ada tiga pin keluaran lainnya (pin 5,4,14) yang hanya akan digunakan ketika IC perlu di-cascade. Pin Carry over (CO - pin 5) akan tetap tinggi secara default, tetapi ketika hitungan mencapai “9” itu akan memberikan pulsa kecil dan penghitungan akan berlanjut dari “0” lagi. Pulsa kecil ini dapat digunakan untuk menggerakkan pin jam dari IC bertingkat untuk menampilkan lebih dari satu digit. Pin Direct Enable output (DEO) akan selalu tetap tinggi, untuk mengaktifkan IC berjenjang, jika tersedia. Pin segmen C yang tidak dilapisi (pin 14) digunakan untuk operasi pembagian apa pun; pin ini akan tetap tinggi secara default dan akan rendah saat hitungan mencapai "2".


8. Logic State

status logika Pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.


9. Sensor Infrared


Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.

Komponen led inframerah atau infra red (IR) pada dasarnya adalah led yang memancarkan sinar infra merah dengan panjang gelombang 850nm.

Infra red (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier).

Bentuk dan Konfigurasi Pin IR Detector Photomodules TSOP

Prinsip Kerja sensor infrared:

Gambar 1. Ilustrasi prinsip kerja sensor infrared
Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.

Gambar 2. Rangkaian dasar sensor infrared common emitter yang menggunakan led infrared dan fototransistor


Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3

Gambar 3. Keadaan Basis Mendapat Cahaya Infra Merah dan Berubah Menjadi Saklar (Switch Close) Secara Sesaat

Grafik Respon Sensor Infrared

Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.


10. Taouch Sensor

 Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.

Jenis-jenis Sensor Sentuh

Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.

Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.

Sensor  Sentuh Kapasitif

Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.

Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.

Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.

Sensor Sentuh Resistif

Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.

 Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).

 Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.

Grafik Respon Sensor Touch:


11. 7 Segment Anoda

Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.

Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.

Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk  dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.


Tabel Pengaktifan Seven Segment Display:


12. Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.



Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali.  Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet.  Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal.  Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik.  Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal close.

Fitur:

 1. Tegangan pemicu (tegangan kumparan) 5V

 2. Arus pemicu 70mA

 3. Beban maksimum AC 10A @ 250 / 125V

 4. Maksimum baban DC 10A @ 30 / 28V

 5. Switching maksimum

 

13. Motor DC

 Prinsip Kerja Motor DC

    Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).

    Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti

    Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan. 


14. Lampu LED

 Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor.

 

LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).


4. Percobaan <kembali>

4.1. Prosedur Percobaan <kembali>

1. Siapkan semua alat dan bahan yang diperlukan

2. Disarankan agar membaca datasheet setiap komponen

3. Cari komonen yang diperlukan di library proteus

4. pasang Gerbang NAND, dan Sensor Infrared,GP2D12,PIR, resistor , inverter ,seven segment, decoder, relay, motor dc, logic state, Lampu dan power suply sesuai gambar rangkaian dibawah

6. Atur nilai resistor serta logic state

7. Coba dijalankan rangkaian apabila ouput hidup(motor dc,lampu,led) dan seven segment menyala maka rangkaian bisa digunakan


4.2. Rangkaian Simulasi <kembali>

Kondisi dimana mesin belum hidup dan sensor touch berlogika 0 dan IR berlogika 0


Kondisi dimana mesin penghitung barang sudah menyala dan tidak ada brang yang melewati sensor IR maka seven segment bernilai 0


Kondisi dimana barang terdeteksi oleh sensor IR maka seven segment menampilkan angka 1


Ketika barang terhitung maka seven segment bernilai 2 


4.3. Prinsip Kerja <kembali>

Pada rangkaian diatas menggunakan sensor touch sebagai penghidup mesin otomatis dan sensor infrared sebagai penghitung barang otomatis dengan menggunakan IC counter 4026 yang ditampilkan di seven segment.

Apabila sensor touch berlogika 1 maka output sensor akan di umpankan ke D FF kaki PRESET yang berlogika 0 karena terjadi pembalikan oleh inverter lalu pada kaki CLEAR berlogika 1 yang menghasilkan output Q berlogika 1 dan Q berlogika 0. Lalu ouput Q di umpankan ke gerbang AND dan Q di umpankan ke inverter sehingga menghasilkan output logika 1 pada kedua input gerbang AND yang mana output gerbang AND juga berlogika 1. Agar arus tidak merusak transistor maka dihambat dengan R2 10k sehingga terukur basisnya sebesar 0.82 V yang sudah mengaktifkan transistor Q2. Karena transistor Q2 aktiv maka arus mengalir dari vcc masuk ke relay lalu menuju ke kaki collector dan masuk ke emitter transistor lalu ke ground.Karena tegangan relay cukup maka coil relay berputar ke kiri. Disini output berupa lampu dan motor dc belum hidup dikarenakan sensor infrared masih berlogika 0 yang berarti belum terhitung barang.

Apabila sensor infrared berlogika 1 maka outputnya akan diumpankan ke D FF kaki PRESET sehingga inputnya berlogika 0 sedangkan output IR juga di umpankan ke kaki CLEAR yang memiliki input logika 1 sehingga menghasilkan output berupa Q berlogika 1 sedangkan Q berlogika 0. Lalu output dari Q diumpankan ke gerbang AND dan output dari Q di balikan dengan inverter lalu diumpankan kke gerbang AND sehingga menghasilkan output gerbang AND berlogika 1. Untuk mencegah arus besar pada transistor maka digunakan R1 10k sehingga terukur tegangan pada basis transistor Q1 sebesar 0.82 V yang mana sudah mengaktifkan transistor. Karena transistor Q1 akriv maka arus mengalir dari vcc masuk ke relay lalu menuju ke kaki collector dan terus ke kaki emitter dan masuk ke gorund. Karena relay mendapatkan tegangan yang cukup maka coil relay bergerak ke kiri sehingga motor dc sebagai penggerak barang aktiv dan lampu sebagai indicator mesin hidup menyala dan akan terhitung oleh IC 4026 barang yang mana akan menampilkan angka 1 pada seven segment.


4.4. Video <kembali>




4.5. Download File <kembali>

Download HTML dan Materi

Download Rangkaian Proteus

Download Video Rangkaian

Download Library Sensor IR

Download Library Sensor touch

Download Datasheet sensor touch

Download Data Sheet Diode

Download Data Sheet Resistor

Download Data Sheet Relay

Download Data SheetTransistor BC547

Data Sheet Inverter NOT(IC 74HC05)

Data Sheet Gerbang AND(IC 7408)

Download Data Sheet Motor DC

Download Data Decoder (IC7447)

Download Data Sheet 7 Segment





Tidak ada komentar:

Posting Komentar